DAVID BERNHARDT, P.E., PRESIDENT COMMISSIONER, MAINE DEPARTMENT OF TRANSPORTATION

BUD WRIGHT, EXECUTIVE DIRECTOR

444 NORTH CAPITOL STREET NW, SUITE 249, WASHINGTON, DC 20001 (202) 624-5800 • FAX: (202) 624-5806 • WWW.TRANSPORTATION.ORG

ERRATA for G2.2, Guidelines for Resolution of Steel Bridge Fabrication Errors, 2016 Edition

December 2016

Dear Customer:

Recently, we were made aware of some technical revisions that need to be applied to the *Guidelines for Resolution of Steel Bridge Fabrication Errors*, 2016 Edition.

Please scroll down to see the full erratum.

In the event that you need to download this file again, please download from AASHTO's online bookstore at:

http://downloads.transportation.org/NSBAGRSB-1-Errata.pdf

Then, please replace the existing pages with the corrected pages to ensure that your edition is both accurate and current.

AASHTO staff sincerely apologizes for any inconvenience to our readers.

Summary of Errata Changes for NSBAGRSB-1, December 2016

Page	Existing Text	Corrected Text
9	C.2.2	[C2.2 was deleted, as it
	High strength bolted	duplicated C2.1.]
	connections in steel bridges	
	are often specified as slip-	
	critical. In this type of	
	connection, the prevention of	
	slip in the service load range is	
	the limit state. Since the load	
	transfer mechanism is friction	
	on the faying surfaces, the	
	design assumption is that the	
	slip resistance provided by the	
	clamping force of each	
	fastener is equal and additive	
	with that at the other fasteners,	
	provided the presumed areas	
	of pressure transfer for the	
	bolts do not overlap. See	
	Figure C-3.1 in the RCSC	
	specification. Slip resistance	
	is also affected by the surface	
	condition and hole size, so if	
	any holes become oversize or	
	slotted, the contribution by	
	that bolt is reduced. Therefore,	
	all locations must develop the	
	slip force before a total joint	
	slip can occur at that plane.	
	However, although a slip-	
	critical connection is designed	
	to not slip into bearing under	
	service loads, the connection	
	must also meet the bearing	
	requirements in an overload	
	condition. This results in a	
	final connection that does not	
	slip under service loads, but	
	also performs in bearing under	
	extreme loads.	
	It is only for the bearing	
	load transfer mechanism that	
	the hole spacing is treated as a	
	direct design parameter. The	
	bearing strength is a function	
	of the hole spacing, so	

Summary of Errata Changes for NSBAGRSB-1, December 2016

	inadequate hole spacing	
	reduces the total bearing	
	strength.	
	For the friction load transfer	
	mechanism, the clamped areas	
	of the plates in contact around	
	each bolt must provide for	
	friction load transfer. There	
	must be enough room to	
	correctly install the bolt.	
63	C8.4	C9.4
63	Weld-induced web distortion	C8.4 Weld-induced web distortion
	happens frequently on relatively	happens frequently on relatively
	thin webs, especially when the	thin webs, especially when the
	Fabricator uses high heat input	Fabricator uses high heat input
	tandem parallel SAW processes.	tandem or parallel SAW
	The preferred technique to	processes.
	resolve this problem is the	The preferred technique to
	application of heat to the web.	resolve this problem is the
	Sometimes corrections will	application of heat to the web.
	result in distortion appearing in	Sometimes corrections will
	another panel section and it may	result in distortion appearing in
	take several attempts to correct	another panel section and it may
	the problem. AASHTO/AWS	take several attempts to correct
	D1.5M/D1.5 is fairly lenient on	the problem. AASHTO/AWS
	the amount of web deflection	D1.5M/D1.5 is fairly lenient on
	(i.e., localized lateral bowing)	the amount of web deflection
	allowed.	(i.e., localized lateral bowing)
		allowed.
		If "oil-canning" is observed
		or anticipated, it may be reduced
		on subsequent girders by
		changing the welding sequence
		(e.g., alternating sides to
		"balance" stresses), modifying
		the weld procedure (e.g.,
		modifying preheat or adding
		post-heat), or determining
		whether smaller welds may be
		employed. Production workers
		should never apply heat to webs
		without controls or a firm plan,
		since distortions may increase or
		more serious defects may result.

2.2—HOLE TOO CLOSE TO FREE EDGE

Error:

A hole is drilled closer to the free edge than permitted by the applicable design specifications or drawings. A "free edge" is a rolled or thermally cut boundary not welded to another component. This includes the end or side edges of a flange, the end of a web, or any edge of a splice plate.

Repair Recommendation:

- 1. If the hole is adjacent to a TCE and bolt placement is based on criteria from the AASHTO *Standard Specifications for Highway Bridges*, for errors up to ½" [3 mm], grind the adjacent edge of the plate to approximate a planed finish and allow a smaller clearance than for a TCE.
- For errors reducing clearance below AASHTO specified minimums but not breaking the edge, determine whether the contribution of the bolt to the connection's total capacity can be neglected.
 - a. If so, the connection may be used as is, but a bolt must still be inserted in the errant hole to address fatigue concerns, maintain the sealing pitch, and avoid confusion on future inspections.
 - b. If neglecting the bolt makes the connection inadequate, follow Repair Recommendation 3 in Section 2.1, "Too Close to Adjacent Hole."
- 3. If the mislocated hole breaks through the edge of one element in the connection, it cannot be ignored, even if the connection has adequate strength without it. If only a very small portion of the hole encroaches into the material, consider grinding 1:10 tapers to the surface if the remaining material will be adequate.

If penetration is significant (more than ½ hole diameter or remaining material will not be adequate), the material must be replaced or repaired. If this

Figure 8.3-1—Flange Cupping and Tilt (shown exaggerated)

C8.4

SAW processes.

8.4—CORRECTING WEB DISTORTION

Error:

Web distortion such as waviness in as-received plate and weld-induced deviations such as "oil-canning" requires correction either because the distortion is beyond the variations from flatness permitted by applicable specifications, or because it prevents assembly of adjoining elements.

Repair Recommendation:

"Oil-canning" is caused by weld shrinkage around the perimeter of a web "panel," bounded by the flanges and interior stiffeners or connection plates, and depends on the web thickness, welding sequence, and panel dimensions. It is common for thin (less than 1/2" [12 mm] thick) webs, especially if ⁵/₁₆" [8 mm] and larger welds are used. Although unsightly, "oil-canning" alone does not usually cause exceeding deviations those allowed AASHTO/AWS D1.5M/D1.5. If tolerances are exceeded, usually with webs less than ⁷/₁₆" [11 mm] thick or when combined with existing waviness, bringing correction requires judicious use of mechanical methods, heat patterns and/or welding or bolting vertical stiffeners to the member. If possible, the web is moved back before attaching the stiffeners, usually to the concave side of the web for welded and to both or just the convex side for bolted. The added stiffeners are to correct web distortion and prevent buckling, so single stiffeners should be connected to the compression flange and pairs sandwiching the

Weld-induced web distortion happens frequently on relatively thin webs, especially when the Fabricator uses high heat input tandem or parallel

The preferred technique to resolve this problem is the application of heat to the web. Sometimes corrections will result in distortion appearing in another panel section and it may take several attempts to correct the problem. AASHTO/AWS D1.5M/D1.5 is fairly lenient on the amount of web deflection (i.e., localized lateral bowing) allowed.

If "oil-canning" is observed or anticipated, it may be reduced on subsequent girders by changing the welding sequence (e.g., alternating sides to "balance" stresses), modifying the weld procedure (e.g., modifying preheat or adding post-heat), or determining whether smaller welds may be employed. Production workers should never apply heat to webs without controls or a firm plan, since distortions may increase or more serious defects may result.